If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+36y+63=0
a = 3; b = 36; c = +63;
Δ = b2-4ac
Δ = 362-4·3·63
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-6\sqrt{15}}{2*3}=\frac{-36-6\sqrt{15}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+6\sqrt{15}}{2*3}=\frac{-36+6\sqrt{15}}{6} $
| 6/5x+6=0 | | 0.833333333x+6=0 | | 5y+7=5(y+5)-22 | | 0.01(x-8)=110 | | 2(x+9)=-7x-9 | | 5y+36=-2(y-4) | | -2(y+1)=8y-42 | | 7y-7=16 | | -8z-4=6 | | 8^x=+3x+14 | | 3x(+)2(5x-(3)=7 | | 1.1w+5.2=2.4w | | 3x(+)2(5x)-(3)=7 | | 8x+4.76=4x+10 | | 2x+5x=x+36= | | 2÷5x-8=7÷5 | | 2x^2-5x=4(x-1) | | 35^x=88 | | 0.8y+9.1=2.1y | | 3x+33=55 | | 3=n/2+8 | | Z^+2z-35=0 | | -28=3y-4 | | 4(9x-9)=-15 | | -26(x-2)+3x=12 | | x^2+3x-40=68 | | (.02)x-4=140 | | 2+2x=6x | | -7(7+2x)=119 | | 5x+19=7x+3 | | 13x-9x+20=32 | | 112.76=7.5x+6.7x+8.7+7.5 |